\(\int \sin (e+f x) (a+b \sin ^2(e+f x))^{3/2} \, dx\) [133]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 114 \[ \int \sin (e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=-\frac {3 (a+b)^2 \arctan \left (\frac {\sqrt {b} \cos (e+f x)}{\sqrt {a+b-b \cos ^2(e+f x)}}\right )}{8 \sqrt {b} f}-\frac {3 (a+b) \cos (e+f x) \sqrt {a+b-b \cos ^2(e+f x)}}{8 f}-\frac {\cos (e+f x) \left (a+b-b \cos ^2(e+f x)\right )^{3/2}}{4 f} \]

[Out]

-1/4*cos(f*x+e)*(a+b-b*cos(f*x+e)^2)^(3/2)/f-3/8*(a+b)^2*arctan(cos(f*x+e)*b^(1/2)/(a+b-b*cos(f*x+e)^2)^(1/2))
/f/b^(1/2)-3/8*(a+b)*cos(f*x+e)*(a+b-b*cos(f*x+e)^2)^(1/2)/f

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 114, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3265, 201, 223, 209} \[ \int \sin (e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=-\frac {3 (a+b)^2 \arctan \left (\frac {\sqrt {b} \cos (e+f x)}{\sqrt {a-b \cos ^2(e+f x)+b}}\right )}{8 \sqrt {b} f}-\frac {3 (a+b) \cos (e+f x) \sqrt {a-b \cos ^2(e+f x)+b}}{8 f}-\frac {\cos (e+f x) \left (a-b \cos ^2(e+f x)+b\right )^{3/2}}{4 f} \]

[In]

Int[Sin[e + f*x]*(a + b*Sin[e + f*x]^2)^(3/2),x]

[Out]

(-3*(a + b)^2*ArcTan[(Sqrt[b]*Cos[e + f*x])/Sqrt[a + b - b*Cos[e + f*x]^2]])/(8*Sqrt[b]*f) - (3*(a + b)*Cos[e
+ f*x]*Sqrt[a + b - b*Cos[e + f*x]^2])/(8*f) - (Cos[e + f*x]*(a + b - b*Cos[e + f*x]^2)^(3/2))/(4*f)

Rule 201

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^p/(n*p + 1)), x] + Dist[a*n*(p/(n*p + 1)),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3265

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Cos[e + f*x], x]}, Dist[-ff/f, Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b - b*ff^2*x^2)^p, x], x, Cos
[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps \begin{align*} \text {integral}& = -\frac {\text {Subst}\left (\int \left (a+b-b x^2\right )^{3/2} \, dx,x,\cos (e+f x)\right )}{f} \\ & = -\frac {\cos (e+f x) \left (a+b-b \cos ^2(e+f x)\right )^{3/2}}{4 f}-\frac {(3 (a+b)) \text {Subst}\left (\int \sqrt {a+b-b x^2} \, dx,x,\cos (e+f x)\right )}{4 f} \\ & = -\frac {3 (a+b) \cos (e+f x) \sqrt {a+b-b \cos ^2(e+f x)}}{8 f}-\frac {\cos (e+f x) \left (a+b-b \cos ^2(e+f x)\right )^{3/2}}{4 f}-\frac {\left (3 (a+b)^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+b-b x^2}} \, dx,x,\cos (e+f x)\right )}{8 f} \\ & = -\frac {3 (a+b) \cos (e+f x) \sqrt {a+b-b \cos ^2(e+f x)}}{8 f}-\frac {\cos (e+f x) \left (a+b-b \cos ^2(e+f x)\right )^{3/2}}{4 f}-\frac {\left (3 (a+b)^2\right ) \text {Subst}\left (\int \frac {1}{1+b x^2} \, dx,x,\frac {\cos (e+f x)}{\sqrt {a+b-b \cos ^2(e+f x)}}\right )}{8 f} \\ & = -\frac {3 (a+b)^2 \arctan \left (\frac {\sqrt {b} \cos (e+f x)}{\sqrt {a+b-b \cos ^2(e+f x)}}\right )}{8 \sqrt {b} f}-\frac {3 (a+b) \cos (e+f x) \sqrt {a+b-b \cos ^2(e+f x)}}{8 f}-\frac {\cos (e+f x) \left (a+b-b \cos ^2(e+f x)\right )^{3/2}}{4 f} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.31 (sec) , antiderivative size = 113, normalized size of antiderivative = 0.99 \[ \int \sin (e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=-\frac {\frac {\cos (e+f x) \sqrt {2 a+b-b \cos (2 (e+f x))} (5 a+4 b-b \cos (2 (e+f x)))}{\sqrt {2}}+\frac {3 (a+b)^2 \log \left (\sqrt {2} \sqrt {-b} \cos (e+f x)+\sqrt {2 a+b-b \cos (2 (e+f x))}\right )}{\sqrt {-b}}}{8 f} \]

[In]

Integrate[Sin[e + f*x]*(a + b*Sin[e + f*x]^2)^(3/2),x]

[Out]

-1/8*((Cos[e + f*x]*Sqrt[2*a + b - b*Cos[2*(e + f*x)]]*(5*a + 4*b - b*Cos[2*(e + f*x)]))/Sqrt[2] + (3*(a + b)^
2*Log[Sqrt[2]*Sqrt[-b]*Cos[e + f*x] + Sqrt[2*a + b - b*Cos[2*(e + f*x)]]])/Sqrt[-b])/f

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(308\) vs. \(2(98)=196\).

Time = 1.12 (sec) , antiderivative size = 309, normalized size of antiderivative = 2.71

method result size
default \(-\frac {\sqrt {\left (\cos ^{2}\left (f x +e \right )\right ) \left (a +b \left (\sin ^{2}\left (f x +e \right )\right )\right )}\, \left (-4 b^{\frac {3}{2}} \sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, \left (\cos ^{2}\left (f x +e \right )\right )+10 b^{\frac {3}{2}} \sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}+10 a \sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, \sqrt {b}-3 \arctan \left (\frac {-2 b \left (\cos ^{2}\left (f x +e \right )\right )+a +b}{2 \sqrt {b}\, \sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}}\right ) a^{2}-6 b \arctan \left (\frac {-2 b \left (\cos ^{2}\left (f x +e \right )\right )+a +b}{2 \sqrt {b}\, \sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}}\right ) a -3 b^{2} \arctan \left (\frac {-2 b \left (\cos ^{2}\left (f x +e \right )\right )+a +b}{2 \sqrt {b}\, \sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}}\right )\right )}{16 \sqrt {b}\, \cos \left (f x +e \right ) \sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}\, f}\) \(309\)

[In]

int(sin(f*x+e)*(a+b*sin(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/16*(cos(f*x+e)^2*(a+b*sin(f*x+e)^2))^(1/2)*(-4*b^(3/2)*(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)*cos(f*x+e
)^2+10*b^(3/2)*(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)+10*a*(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)*b^(1
/2)-3*arctan(1/2*(-2*b*cos(f*x+e)^2+a+b)/b^(1/2)/(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2))*a^2-6*b*arctan(1/
2*(-2*b*cos(f*x+e)^2+a+b)/b^(1/2)/(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2))*a-3*b^2*arctan(1/2*(-2*b*cos(f*x
+e)^2+a+b)/b^(1/2)/(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)))/b^(1/2)/cos(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2)/f

Fricas [A] (verification not implemented)

none

Time = 0.54 (sec) , antiderivative size = 495, normalized size of antiderivative = 4.34 \[ \int \sin (e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=\left [-\frac {3 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \sqrt {-b} \log \left (128 \, b^{4} \cos \left (f x + e\right )^{8} - 256 \, {\left (a b^{3} + b^{4}\right )} \cos \left (f x + e\right )^{6} + 160 \, {\left (a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right )} \cos \left (f x + e\right )^{4} + a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4} - 32 \, {\left (a^{3} b + 3 \, a^{2} b^{2} + 3 \, a b^{3} + b^{4}\right )} \cos \left (f x + e\right )^{2} + 8 \, {\left (16 \, b^{3} \cos \left (f x + e\right )^{7} - 24 \, {\left (a b^{2} + b^{3}\right )} \cos \left (f x + e\right )^{5} + 10 \, {\left (a^{2} b + 2 \, a b^{2} + b^{3}\right )} \cos \left (f x + e\right )^{3} - {\left (a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} \cos \left (f x + e\right )\right )} \sqrt {-b \cos \left (f x + e\right )^{2} + a + b} \sqrt {-b}\right ) - 8 \, {\left (2 \, b^{2} \cos \left (f x + e\right )^{3} - 5 \, {\left (a b + b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt {-b \cos \left (f x + e\right )^{2} + a + b}}{64 \, b f}, \frac {3 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \sqrt {b} \arctan \left (\frac {{\left (8 \, b^{2} \cos \left (f x + e\right )^{4} - 8 \, {\left (a b + b^{2}\right )} \cos \left (f x + e\right )^{2} + a^{2} + 2 \, a b + b^{2}\right )} \sqrt {-b \cos \left (f x + e\right )^{2} + a + b} \sqrt {b}}{4 \, {\left (2 \, b^{3} \cos \left (f x + e\right )^{5} - 3 \, {\left (a b^{2} + b^{3}\right )} \cos \left (f x + e\right )^{3} + {\left (a^{2} b + 2 \, a b^{2} + b^{3}\right )} \cos \left (f x + e\right )\right )}}\right ) + 4 \, {\left (2 \, b^{2} \cos \left (f x + e\right )^{3} - 5 \, {\left (a b + b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt {-b \cos \left (f x + e\right )^{2} + a + b}}{32 \, b f}\right ] \]

[In]

integrate(sin(f*x+e)*(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

[-1/64*(3*(a^2 + 2*a*b + b^2)*sqrt(-b)*log(128*b^4*cos(f*x + e)^8 - 256*(a*b^3 + b^4)*cos(f*x + e)^6 + 160*(a^
2*b^2 + 2*a*b^3 + b^4)*cos(f*x + e)^4 + a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4 - 32*(a^3*b + 3*a^2*b^2 + 3*
a*b^3 + b^4)*cos(f*x + e)^2 + 8*(16*b^3*cos(f*x + e)^7 - 24*(a*b^2 + b^3)*cos(f*x + e)^5 + 10*(a^2*b + 2*a*b^2
 + b^3)*cos(f*x + e)^3 - (a^3 + 3*a^2*b + 3*a*b^2 + b^3)*cos(f*x + e))*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(-b
)) - 8*(2*b^2*cos(f*x + e)^3 - 5*(a*b + b^2)*cos(f*x + e))*sqrt(-b*cos(f*x + e)^2 + a + b))/(b*f), 1/32*(3*(a^
2 + 2*a*b + b^2)*sqrt(b)*arctan(1/4*(8*b^2*cos(f*x + e)^4 - 8*(a*b + b^2)*cos(f*x + e)^2 + a^2 + 2*a*b + b^2)*
sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(b)/(2*b^3*cos(f*x + e)^5 - 3*(a*b^2 + b^3)*cos(f*x + e)^3 + (a^2*b + 2*a*
b^2 + b^3)*cos(f*x + e))) + 4*(2*b^2*cos(f*x + e)^3 - 5*(a*b + b^2)*cos(f*x + e))*sqrt(-b*cos(f*x + e)^2 + a +
 b))/(b*f)]

Sympy [F(-1)]

Timed out. \[ \int \sin (e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=\text {Timed out} \]

[In]

integrate(sin(f*x+e)*(a+b*sin(f*x+e)**2)**(3/2),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.93 \[ \int \sin (e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=-\frac {\frac {3 \, {\left (a + b\right )} a \arcsin \left (\frac {b \cos \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right )}{\sqrt {b}} + 3 \, {\left (a + b\right )} \sqrt {b} \arcsin \left (\frac {b \cos \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right ) + 2 \, {\left (-b \cos \left (f x + e\right )^{2} + a + b\right )}^{\frac {3}{2}} \cos \left (f x + e\right ) + 3 \, \sqrt {-b \cos \left (f x + e\right )^{2} + a + b} {\left (a + b\right )} \cos \left (f x + e\right )}{8 \, f} \]

[In]

integrate(sin(f*x+e)*(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

-1/8*(3*(a + b)*a*arcsin(b*cos(f*x + e)/sqrt((a + b)*b))/sqrt(b) + 3*(a + b)*sqrt(b)*arcsin(b*cos(f*x + e)/sqr
t((a + b)*b)) + 2*(-b*cos(f*x + e)^2 + a + b)^(3/2)*cos(f*x + e) + 3*sqrt(-b*cos(f*x + e)^2 + a + b)*(a + b)*c
os(f*x + e))/f

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2403 vs. \(2 (98) = 196\).

Time = 0.63 (sec) , antiderivative size = 2403, normalized size of antiderivative = 21.08 \[ \int \sin (e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=\text {Too large to display} \]

[In]

integrate(sin(f*x+e)*(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

1/4*(3*(a^2 + 2*a*b + b^2)*arctan(-1/2*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*t
an(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a) + sqrt(a))/sqrt(b))/sqrt(b) + 2*(5*(sqrt(a)*tan(1/2*f*
x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^7
*a^2 - 6*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*ta
n(1/2*f*x + 1/2*e)^2 + a))^7*a*b - 3*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan
(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^7*b^2 + 35*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan
(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^6*a^(5/2) + 22*(sqrt(a)*ta
n(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2
 + a))^6*a^(3/2)*b - 21*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/
2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^6*sqrt(a)*b^2 + 105*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2
*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^5*a^3 + 246*(sqrt(a)*tan(1/2*f
*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^
5*a^2*b + 105*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4
*b*tan(1/2*f*x + 1/2*e)^2 + a))^5*a*b^2 - 44*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 +
 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^5*b^3 + 175*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - s
qrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^4*a^(7/2) + 690*(
sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x
+ 1/2*e)^2 + a))^4*a^(5/2)*b + 735*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1
/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^4*a^(3/2)*b^2 + 292*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqr
t(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^4*sqrt(a)*b^3 + 175
*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*
x + 1/2*e)^2 + a))^3*a^4 + 950*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f
*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^3*a^3*b + 1623*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1
/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^3*a^2*b^2 + 936*(sqrt(a)*tan
(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2
+ a))^3*a*b^3 + 176*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)
^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^3*b^4 + 105*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e
)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^2*a^(9/2) + 714*(sqrt(a)*tan(1/2*f*x + 1/2
*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^2*a^(7/2
)*b + 1761*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*
tan(1/2*f*x + 1/2*e)^2 + a))^2*a^(5/2)*b^2 + 1640*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e
)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^2*a^(3/2)*b^3 + 528*(sqrt(a)*tan(1/2*f*x +
 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^2*sq
rt(a)*b^4 + 35*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 +
4*b*tan(1/2*f*x + 1/2*e)^2 + a))*a^5 + 282*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2
*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))*a^4*b + 963*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqr
t(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))*a^3*b^2 + 1540*(sqr
t(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1
/2*e)^2 + a))*a^2*b^3 + 912*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x
+ 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))*a*b^4 + 192*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x
 + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))*b^5 + 5*a^(11/2) + 46*a^(9/2)*b +
213*a^(7/2)*b^2 + 500*a^(5/2)*b^3 + 560*a^(3/2)*b^4 + 192*sqrt(a)*b^5)/((sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt
(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))^2 + 2*(sqrt(a)*tan(1
/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 +
a))*sqrt(a) + a + 4*b)^4)/f

Mupad [F(-1)]

Timed out. \[ \int \sin (e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=\int \sin \left (e+f\,x\right )\,{\left (b\,{\sin \left (e+f\,x\right )}^2+a\right )}^{3/2} \,d x \]

[In]

int(sin(e + f*x)*(a + b*sin(e + f*x)^2)^(3/2),x)

[Out]

int(sin(e + f*x)*(a + b*sin(e + f*x)^2)^(3/2), x)